
Annals of Nuclear Energy 103 (2017) 454–469
Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene
A PLC platform-independent structural analysis on FBD programs for
digital reactor protection systemsq
http://dx.doi.org/10.1016/j.anucene.2017.02.006
0306-4549/� 2017 Elsevier Ltd. All rights reserved.

q This paper was originally published in Korean Nuclear Society Autumn Meeting
2014 (Jung et al., 2014).
⇑ Corresponding author.

E-mail address: jbyoo@konkuk.ac.kr (J. Yoo).

1 This paper uses the term ‘PLC platform’ to indicate the pair (a PLC
engineering tool, a target PLC) such as (pSET, POSAFE-Q PLC) and (SIMATIC-
SIMATIC Controller).
Sejin Jung a, Junbeom Yoo a,⇑, Young-Jun Lee b

aKonkuk University, Republic of Korea
bKorea Atomic Energy Research Institute, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 March 2016
Received in revised form 3 February 2017
Accepted 5 February 2017

Keywords:
Structural analysis
Function block diagram
PLC
Guidelines
FBD (function block diagram) has been widely used to implement safety-critical software for PLC (pro-
grammable logic controller)-based digital nuclear reactor protection systems. The software should be
developed strictly in accordance with safety programming guidelines such as NUREG/CR-6463.
Software engineering tools of PLC vendors enable us to present structural analyses using FBD programs,
but specific rules pertaining to the guidelines are enclosed within the commercial tools, and specific links
to the guidelines are not clearly communicated. This paper proposes a set of rules on the structure of FBD
programs in accordance with guidelines, and we develop an automatic analysis tool for FBD programs
written in the PLCopen TC6 format. With the proposed tool, any FBD program that is transformed into
an open format can be analyzed the PLC platform-independently. We consider a case study on FBD pro-
grams obtained from a preliminary version of a Korean nuclear power plant, and we demonstrate the
effectiveness and potential of the proposed rules and analysis tool.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

PLCs (programmable logic controllers) have been widely used in
the development of embedded controllers of various safety-critical
systems. The software implemented with PLCs is typically pro-
grammed with PLC programming languages such as FBD (function
block diagram), and then software engineering tools of PLC vendors
synthesize the programs into PLC-executable codes mechanically.
All issues related to structural correctness and the safety of the
FBD programs need to be addressed in order to proceed with the
mechanical synthesis. Software engineering tools developed by
PLC vendors can check these issues strictly, but vendor-
dependently and SW tool-internally.

RPS (Reactor Protection System) in nuclear power plants is
implemented using PLCs, and the software used is often pro-
grammed with FBD. Because these systems are safety-critical sys-
tems, a hierarchy of standards, regulations, and guidelines on the
structural quality (i.e., correctness and safety) of software pro-
grams should be satisfied to obtain operational approval of govern-
ment authorities. IEC 61131-3 (IEC, 2013), IEC 61508 (IEC, 1997),
and NUREG/CR-6463 (NRC, 1997) are some examples of such stan-
dards. NUREG/CR-6463 is top-most programming guideline for
software development, and all software engineering tools devel-
oped by PLC vendors apply it in the analysis of FBD programs. In
this paper, we focus on the problem whereby commercial tools
perform the structural analysis well, but the exact correspondence
(or relation) to upper rules and guidelines is neither clear nor
opened.

In this paper, we propose a set of specific rules regarding the
structure of FBD programs in accordance with the guidelines of
higher levels. We can argue direct relations from one rule/guide-
line to upper ones. We also developed an automatic analysis tool
‘‘FBD Checker” for FBD programs in the PLCopen TC6 format
(PLCopen XML schema Ver. 2.0, 2008). Any FBD program that is
written or transformed into the open format can be analyzed the
PLC platform1-independently. In other words, we do not have to
use the software engineering tools of specific PLC vendors. We also
performed case studies of structural analyses on FBD programs that
were sampled from preliminary versions of Korean nuclear power
plants. The results show the effectiveness and potential of the pro-
posed rule sets and analysis tool.

The paper is organized as follows. In Section 2, we discuss back-
ground information such as FBD programming. Section 2 also
software
Manager,
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describes a hierarchy of standards, rules, and guidelines for FBD
programming, which are relevant to our discussion, i.e., developing
PLC software in nuclear reactor protection systems. In Section 3,
we explain detailed sets of guidelines that are proposed in this
paper, along with examples, and in Section 4, we introduce the
automatic structure analyzer - FBD Checker. We explain the case
study in Section 5, while in Section 6, we conclude the paper and
give remarks on our future research direction.
2. Background

2.1. FBD programming

FBD is one of the five PLC programming languages defined by
the IEC 61131-3 standard (IEC, 2013), and it is the most widely
used language to implement PLC-based safety-critical systems in
nuclear power plants. FBD is a data-flow-based language that con-
sists of function blocks that connect with each other. FBD program-
ming is the process of connecting blocks to other blocks
sequentially in order to produce appropriate outputs. Fig. 1 is an
example of an FBD program, which is a part of ‘fixed set-point rising
trip.’ As we will explain in Section 5, this FBD program was origi-
nally an NuSCR (nuclear software cost reduction) (Yoo et al., 2005)
formal requirements specification (KAERI, 2003), and the NuDE
(nuclear development environment) framework (Yoo et al., 2014a;
Yoo et al., 2014b; Kim et al., accepted) transformed it into a behav-
iorally equivalent FBD program.

FBD program in Fig. 1 consists of five function blocks, and it has
a set of interconnections according to a predefined sequential exe-
cution order such as (27)–(31), which is labeled in Fig. 1. For exam-
ple, the first function block that is executed is LT_INT(27), while
the last one is AND_BOOL(31). LT_INT is a function block that cal-
culates the logical ‘<’ with two decimal integer inputs, and other
function blocks can be understood in a similar way. The last func-
tion block AND_BOOL produces an output TRIP, which indicates a
shutdown signal for nuclear reactors.

Fig. 2 shows a typical software development process for PLCs,
used to develop safety-grade digital I&Cs. We first wrote the SRS
(Software Requirements Specification) using in natural languages,
and we then manually modeled the design specification using
PLC programming languages such as FBD or LD. As commercial
PLC vendors provide software engineering tools2 to support
mechanical translation from FBD/LD programs into C and executable
codes for PLCs, most manual software programming will finish at the
design phase. Structural analysis on FBD programs is also performed
by PLC software engineering tools.
2.2. FBD Programming guidelines for safety systems in nuclear power
plants

Fig. 3 summarizes FBD programming guidelines for safety sys-
tems in nuclear power plants, which are pertinent to our discus-
sion - ‘structural analysis on FBD programs.’ Below, the IEC 61131
Part 3 (IEC, 2013) defines 5 PLC programming languages, e.g.,
FBD, LD (Ladder Diagram) and ST (Structured Text), while Part 8
(IEC, 1993) provides basic programming guidelines to be followed
with PLC programming languages. They define the FBD program-
ming language and provide guidelines regarding how to program
with FBD for PLC-based systems of general-purpose.

Based on the standards, the technical report of PLCopen TC5
(Safety Software Technical Specification, 2006; Safety Software
2 e.g., ‘TriStation 1131’ of Invensys (Invensys, 2015), ‘SIMATIC-Manager’ of Siemens
(SIEMENS, 2015), ‘pSET’ of PONU-Tech (PONU-Tech, 2015; Cho et al., 2007), and
‘SPACE’ of AREVA (AVERA, 2015).
Technical Specification, 2008) provides FBD programming guideli-
nes for safety-critical systems. It suggests safe data types, which
contain additional information for the safety status and level, as
well as safe function blocks. PLCopen TC6 (PLCopen XML schema
Ver. 2.0, 2008) also defines an open XML format for FBDs to enable
the exchange of FBD programs with others, and this is because FBD
programs produced by commercial software engineering tools of
PLC vendors are not compatible with others. In this paper, we
use the XML format to perform a structural analysis on FBD pro-
grams, vendor and tools (i.e., the PLC platform-independently).

NUREG/CR-6463 (NRC, 1997; NRC, 1997) provides guidelines on
software programming languages for nuclear power plant safety
systems, as defined by the NRC (Nuclear Regulatory Commission)
(NRC, 2015). It provides the following high-level languages, e.g.,
Ada, C/C++, LD, FBD, Sequential Function Charts (SFC), Pascal, and
PL/M. Further, it consists of 4 high-level categories such as reliabil-
ity, robustness, traceability, and maintainability. The guidelines with
respect to reliability are to improve the dependability and guaran-
tee correctness, while the guidelines with respect tomaintainability
increase the readability and decrease the complexity. The robust-
ness contains exception handling, and so on. The category of relia-
bility also consists of 3 sub-chapters, namely predictability of
memory utilization, control flow, and timing, and others also have
several sub-chapters generically.

PLC vendors have provided safety-level PLCs and their own soft-
ware engineering tools for developing safety-critical systems in
nuclear power plants, as shown in Fig. 3. The commercial tools con-
tain internal structural analysis facilities, which are internally
referred to as the NUREG/CR-6463 guidelines. However, rules on
FBD structures and specific mapping from the rules to the higher
guidelines are not made public. While basic guidelines (SIEMENS
PLC Control Systems, 2015; Invensys, 2006) with respect to how
to programwith function blocks have been publicized, specific rules
in accordance with the higher guidelines have not been publicized.

2.3. Related work

To the best of our knowledge, few studies have focused on
structural analysis using FBD programs. Lee et al. (2014) proposes
5 categories of FBD programming guidelines for safety-critical sys-
tems, such as data type, variable initialization, usage of variable,
execution control, and explicit ordering. However, it does not
clearly correspond to the top-most guideline, NUREG/CR-6463,
whose target applications are safety systems in nuclear power
plants. de Mario (2008) proposes 9 kinds of restrictions that should
be followed to program with the IEC 61131-3 programming lan-
guages for high-integrity applications. Type safety, memory access,
global variables, and conversion are some examples of the pro-
posed restriction categories. As the restrictions are proposed for
all PLC programming languages, e.g., LD and SFC, we need to select
appropriate ones for FBD. The restrictions also need to be refined in
detail to enable their use as rules for rule checking. For example, it
deals with conversion between integers only.

Several researches that focus on static analysis, not rule check-
ing on FBD programs, are as follows: Prahofer et al. (2012) provides
7 issues for static analysis on the IEC 61131-3 languages. Program
complexity, unreachable codes, and performance problems are
some examples. It also includes areas that are related to rule
checking, such as naming convention. Codesys (CODESYS, 2015) is
a programming tool of IEC 61131-3 programming languages that
provides a static analysis on FBD programs. Using a technical data
sheet (CODESYS, 2015), it also provides a list of subjects that
includes useless declaration, detection of unreachable code, and
naming convention. Fig. 4 depicts the above studies and our pro-
posed approach – ‘FBD Checker’ from the perspective of structural
analysis on FBD programs.



Fig. 1. An example of FBD for fixed set-point rising trip.

Fig. 2. Typical software development process for PLCs.

Fig. 3. FBD programming guidelines.
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We also performed to compare ‘FBD Checker’ to top-most guide-
line and other related works, which we explained in the section
above. Table 1 summarizes the correspondence from the top-
most guideline NUREG/CR-6463 to each approach. Specific rules
or guidelines are analyzed for every category of NUREG/CR-6463.
According to the guidelines, the categories of robustness and trace-
ability are excluded from the comparison because these are not
appropriate for FBD programs. The table shows that ‘FBD Checker’



Fig. 4. An inclusion relation between related work and guidelines.

Table 1
Comparison viewpoint of structural analysis in the guidelines.

NUREG/CR-6463 FBD Checker Lee et al. (2014) de Mario (2008) Prahofer et al. (2012) CODESYS (2015)

Reliability Maximizing Structure (1.2.1) O � � � �
Minimizing Control Flow Complexity (1.2.2) O � D D O
Variable Initialization (1.2.3) O D � � D
Single Entry and Exit Points (1.2.4) O � � � �
Interface Ambiguities (1.2.5) O � � � �
Data Typing (1.2.6), (1.2.7) O D � D O
Correct Ordering (1.2.8) O O O � �

Robustness Exception Handling (2.1) – – – – –

Traceability Use of built-in functions (3.1) – – – – –
Use of Compiled Libraries (3.2) – – – – –

Maintainability Drawing Diagram (4.1.1) O � � � �
Identifier Names (4.1.2) O D � O �
Mixed Language Programming (4.1.5) O � � � �
Minimize Use of Literals (4.1.8) O � � � �
Minimize Global Variables (4.2.3) O � O � �
Minimize interface complexity (4.2.4) O � � � �

Table 2
Overview of the rules for structural analysis on FBD programming.

Category The ‘FBD Checker’ NUREG/CR-6463

Sub Category Number of Rules Contents Sub Category

1. Reliability 1.1 Correct Control Flow 1 1.2.1 Maximizing Structure 1.2 Predictability of Control Flow
7 1.2.2 Minimizing Control Flow Complexity
1 1.2.8 Order of Precedence of Arithmetic, Logical

and Function Operators
1.2 Correct Variables and
Functions

2 1.2.3 Initialization of Variable before Use

1 1.2.4 Single Entry and Exit points in
Subprograms

1 1.2.5 Minimization of Interface Ambiguities
6 1.2.6 Use of Data Typing
1 1.2.7 Precision and Accuracy

1.3 Type Conversion 1 1.2.6 Use of Data Typing
18 1.2.7 Precision and Accuracy

N/A – 1.1, 1.2.9 � 1.2.13, 1.3

2. Robustness N/A – 2.1.1, 2.1.2 2.1 Exception Handling

3. Traceability N/A – – 3.1, 3.2

4. Maintainability 2.1 Drawing Diagrams 8 4.1.1 Layout of FBD Diagram 4.1 Readability
1 4.1.5 Minimize Mixed Language Programming

2.2 Defining Variables 5 4.1.2 Descriptive Identifier Names
1 4.1.8 Minimize Use of Literals

2.3 Abstraction 1 4.2.3 Minimization of the Use of Global
Variables

4.2 Abstraction

1 4.2.4 Minimization of Interface Complexity
N/A - 4.1.3, 4.1.4, 4.1.6, 4.1.7, 4.2.1, 4.1.2, 4.3 � 4.5
Total 56

*N/A from NUREG/CR-6463: 1.1, 1.2.9, 1.2.11, 1.2.12, 1.2.13, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.6, 4.1.4, 4.1.6, 4.1.7, 4.2.1, 4.2.2, 4.5.
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Fig. 5. An example of an input port with no connection.
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can handle all categories sufficiently from the perspective of struc-
tural rule checking of FBD programs for safety systems in nuclear
power plants.

3. Structural analysis rules for FBD programs

In this paper, we propose a set of specific structural analysis
rules for FBD programs, which can bridge the gap between the
top-level guideline NUREG/CR-6463 and FBD programs under
development. The rules are all mapped to corresponding guidelines
of NUREG/CR-6463, and are detailed enough for direct application
into FBD programs. The rules are also implemented into an auto-
matic checking tool – ‘FBD Checker’.

3.1. Organization of the rules

Table 2 provides a brief overview of the organization of the
rules that are proposed in this paper, and which were implemented
into the case tool ‘FBD Checker.’ There are 56 rules with 6 sub-
categories, and they all correspond to specific sub-categories of
NUREG/CR-6463. For example, 11 rules of ‘‘1.2 Correct Variables
and Functions” of FBD Checker are mapped to 5 sub-categories of
‘‘1.2 Predictability of Control Flow” in NUREG/CR-6463. As NUREG/
CR-6463 defines that the categories of ‘‘2. Robustness” and ‘‘3.
Traceability” and their 16 sub-categories are not applicable to
FBD programs, we provide no rules for the categories. We also have
8 different no-rules (N/A), whereas NUREG/CR-6463 does not,
because the technique of rule checking cannot handle them.
‘‘1.2.10 Proper Handling of Program Instrument” is an example of
these cases. In summary, the 14 guidelines of NUREG/CR-6463
have been refined into 56 rules, which can be applied into FBD pro-
grams PLC platform-independently.

3.2. Rules of reliability

The category of ‘‘1. Reliability” consists of 39 rules with 3 sub-
categories, as presented in Table 2. This subsection explains the
rules according to their categories. Because of space limitations,
we focus on new rules that are not covered by NUREG/CR-6463.

3.2.1. Correct control flow
For the correct execution safety of FBD applications, it is impor-

tant to ensure that an FBD program is executed in accordance with
a predefined execution order of function blocks. Any possible
occurrence that may distort the execution order from the expecta-
tion of programmers should be avoided beforehand. Here, we pro-
pose 9 rules for detecting and avoiding incorrect control flow from
FBD programs, and explanations on the new ones are as follows:

1.1 Correct Control Flow

1.1.1 The JUMP function block should be used less than
MAX_JUMP times within a program

1.1.2 The number of function blocks in an FBD should be less
than MAX_FUNCTION

1.1.3 All input ports in a function block should be connected
to others

1.1.4 The type of a function block and that of its connected
output variable should be the same

1.1.5 The MOVE function block should be used intentionally
1.1.6 All connections should be identified in advance
1.1.7 A predefined execution order should coincide with the

connection of blocks
1.1.8 All variables should be used
1.1.9 An assignment should be used with a MOVE function

block
Rule 1.1.3 All input ports in a function block should be con-
nected to others
Fig. 5 shows an example in which an input port IN1 of
AND_BOOL has no connections with others. As commercial PLC soft-
ware engineering tools provide the input port with an initial/
default value (e.g., 0) implicitly, programmers may take no note
of it.

Rule 1.1.4 The type of a function block and that of its con-
nected output variable should be the same

Fig. 5 also shows an example where the type mismatch results
in an implicit-type conversion. While OR_BOOL produces a Boolean
output, it has been converted into an integer Result_INT implicitly.

Rule 1.1.5 The MOVE function block should be used
intentionally

The MOVE function block is often used to deliver a variable to
others through renaming. Fig. 6 illustrates the two cases. While
MOVE_INT renames the input variable Var1_INT to Result1_INT
intentionally, the two MOVE_BOOL have no effect on the execution
result.

Rule 1.1.6 All connections should be identified in advance
Connection is widely used to make the FBD execution more

obvious and clearer. If an output variable is subsequently used as
an input, the connection (connector + continuation) can remove
the connected (long) wires neatly, as depicted in Fig. 7. Connec-
tion_INT from ADD_INT(2) is subsequently used as an input to
SUB_INT(10) and MUL_INT(20). All connections in an FBD should
be identified in advance in order to distinguish them from implicit
feedback variables (IEC, 2013).

3.2.2. Correct variables and functions
To realize the safety of FBD applications, it is important to

ensure that all I/O variables and function blocks are defined and
used correctly according to the standard and guidelines. We pro-
pose 11 rules for detecting and avoiding incorrect uses of variables
and functions, and for some of them, we provide detailed
explanations.

1.2 Correct Variables and Functions

1.2.1 All local variables should be initialized
1.2.2 All feedback variables should be initialized
1.2.3 The number of output variables that are not feedback

variables should be less than MAX_OUTPUT
1.2.4 The number of input types of user-defined function

blocks should be less than MAX_MIXEDTYPE
1.2.5 The variable type should be defined
1.2.6 The function block type should be defined
1.2.7 Arithmetic function blocks should be used with the

ANY_NUM type
1.2.8 Bitwise function blocks should be used with the ANY_BIT

type
1.2.9 Timer function blocks should be used the ANY_TIME type
1.2.10 If it is available, use the LREAL type rather than REAL
1.2.11 ‘0’ should not be used in AND

nergy 103 (2017) 454–469



Fig. 6. The use of MOVE function block.

Fig. 7. An example of connections.
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Rule 1.2.1 1.2.2 All local and feedback variables should be
initialized

All variables that are not I/O variables as well as feedback ones,
should be initialized before use, even if commercial software engi-
neering tools initialize them with default values. Unintended exe-
cution may result from garbage values read from the undefined
variables.

Rule 1.2.6 The function block type should be defined
Fig. 8 shows an example of using a type-undefined function

block ADD. When the type of the function block is not defined, all
types of input ports are possible, and the calculation may result
in different types of output, i.e., integer or real. Consequently, the
next function block ADD_INT may produce incorrect outputs.

1.2.7 1.2.8 1.2.9 All built-in function types should be used
with designated types

All built-in functions that are defined by IEC 61131-3 should be
used with the designated types only. All arithmetic functions, such
as ADD and MUL, should be defined with the ANY_NUM types. All
bitwise functions, such as AND and OR, should be defined with
the ANY_BIT types. On the other hand, selection and comparison
functions can be defined with the ANY_ELEMENTARY type, as
defined in hTable 3i
Fig. 8. An example of overload (undefined) function block.
3.2.3. Type conversion
A function block can be interpreted as different types in two

ways, such as implicit- and explicit-type conversions. An
implicit-type conversion is a potential source of unexpected and
distorted control flow and data, and we have to use it carefully.
For example, the output REAL value of SEL_REAL in Fig. 9 is con-
verted into an INT value implicitly. The up-to-date IEC 61131-3
(IEC, 2013) also emphasizes the importance of type conversions.
In accordance with the recommendation of NUREG/CR-6463, for
all cases, we strictly prohibit the implicit-type conversion and pro-
pose the use of the explicit-type conversion. Some explicit-type
conversions are also restricted to prevent loss of data.

Table 3 presents a hierarchy of the generic data types in IEC
61131-3. In this paper, we use the above-mentioned naming con-
vention in order to avoid any unnecessary confusion. We also use
(Other_Types) to indicate different types from specific one. We
propose 19 rules regarding the type conversion. Implicit-type con-
version should not be used, and programmers have to use explicit-
type conversions appropriately. ‘‘(A) ) (B)” indicates an explicit-
type conversion from the data type (A) to the type (B).

1.3 Type Conversion

1.3.1 Implicit-type conversion should not be used

1.3.2 Explicit-type conversion: (ANY_SIGNED) ) (Other_Types)
1.3.2.1 (Other_Types): (ANY_DURATION, ANY_DATE,
ANY_CHARS) are not allowed

1.3.2.2 (Other_Types): (ANY_UNSIGNED) is not allowed
1.3.2.3 (Other_Types): (ANY_SIGNED) is allowed only with the 5

cases:

((SINT))(INT, DINT, LINT), (INT))(DINT, LINT),

(DINT))(LINT))

(continued on next page)
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(continued)

1.3 Type Conversion

1.3.2.4 (Other_Types): (ANY_REAL) is allowed only with the 5

cases:

((SINT))(REAL,LREAL), (INT))(REAL,LREAL), (DINT))
(LREAL)))

1.3.2.5 (Other_Types): (ANY_BIT) is allowed only with the 4 cases:

((SINT))(BYTE), (INT))(WORD), (DINT))(DWORD),

(LINT))(LWORD))

1.3.3 Explicit-type conversion: (ANY_UNSIGNED) )
(Other_Types)
1.3.3.1 (Other_Types): (ANY_DURATION, ANY_DATE,
ANY_CHARS) are not allowed

1.3.3.2 (Other_Types): (ANY_UNSIGNED) is allowed only with

the 6 cases:

((USINT))(UINT, UDINT, ULINT), (UINT))(UDINT,

ULINT), (UDINT))(ULINT))

1.3.3.3 (Other_Types): (ANY_SIGNED) is allowed only with the 6

cases:

((USINT))(INT, DINT, LINT), (UINT))(DINT, LINT),

(UDINT))(LINT))

1.3.3.4 (Other_Types): (ANY_REAL) is allowed only with the 5

cases:

((USINT))(REAL,LREAL), (UINT))(REAL,LREAL),

(UDINT))(LREAL))

1.3.3.5 (Other_Types): (ANY_BIT) is allowed only with the 4

cases:

((USINT))(BYTE), (UINT))(WORD), (UDINT))
(DWORD), (ULINT))(LWORD))

1.3.4 Explicit-type conversion: (ANY_BIT))(Other_Types)
1.3.4.1 (Other_Types): (ANY_DURATION, ANY_DATE,
ANY_CHARS) are not allowed

1.3.4.2 (Other_Types): (ANY_REAL) is not allowed
1.3.4.3 (Other_Types): (ANY_BIT) is allowed with the 10 cases:

((BOOL))(BYTE, WORD, DWORD, LWORD), (BYTE))
(WORD, DWORD, LWORD)

(WORD))(DWORD, LOWRD), (DWORD))(LOWRD))

1.3.4.4 (Other_Types): (ANY_SIGNED) is allowed only with the 9

cases:

((BOOL))(SINT, INT, DINT, LINT), (BYTE))(SINT),

(WORD))(INT)

(DWORD))(DINT), (LWORD))(LINT))

1.3.4.5 (Other_Types): (ANY_UNSIGNED) is allowed only with

the 9 cases:

((BOOL))(USINT, UINT, UDINT, ULINT), (BYTE))
(USINT), (WORD))(UINT)

(DWORD))(UDINT), (LWORD))(ULINT))

1.3.5 Explicit-type conversion: (ANY_REAL) ) (Other_Types)
1.3.5.1 (REAL))(LREAL) is only allowed

1.3.6 Explicit-type conversion: (ANY_DATE) ) (Other_Types)
1.3.6.1 (LTOD))(TOD) is only allowed

1.3.7 Explicit-type conversion: (ANY_CHARS))(ANY_CHARS) is
only allowed

Rule 1.3.1 Implicit-type conversion should not be used
An implicit-type conversion occurs when two variables or ports

with different types are connected. For example, ADD_INT in Fig. 9
performs the addition of two values - an integer value from IN2

and a real value from IN1, and then the result OUT is produced
as an integer type. The result of SEL_REAL may lose the value
below the decimal point implicitly.
Rule 1.3.2 Explicit-type conversion: (ANY_SIGNED) )
(Other_Types)

The explicit-type conversion from (ANY_SIGNED) into (Other_-
Types) can be categorized as 5 types of (Other_Types). The example
in Fig. 10 shows the explicit conversions from (INT))(DINT),
(DINT))(LREAL) and (SINT))(LREAL).

Rule 1.3.3 Explicit-type conversion: (ANY_UNSIGNED) )
(Other_Types)

The explicit-type conversion from (ANY_UNSIGNED) into
(Other_Types) can be categorized as 5 types of (Other_Types).
The example in Fig. 11 shows the explicit conversions from
(UINT))(UDINT) and (UDINT))(LREAL).

Rule 1.3.4 Explicit-type conversion: (ANY_BIT) )
(Other_Types)

The explicit-type conversion from (ANY_BIT) into (Other_Types)
can be categorized as 5 types of (Other_Types). The example in
Fig. 12 shows the explicit conversions from (BOOL))(WORD),
(BOOL))(INT) and (WORD))(INT).

3.3. Rules of maintainability

The category ‘‘2. Maintainability” consists of 17 rules with three
sub-categories, as presented in Table 2. The rules in this category
focus on improving the maintainability of FBD programs by draw-
ing diagrams neatly and using variables consistently.

3.3.1. Drawing diagrams
It is important to draw a function block diagram neatly from the

perspective of readability. Even if it is correct and valid, overlap-
ping diagrams or wires (lines) may be contributing factors to
misunderstanding, and should be checked rigorously. We provide
9 rules of ‘‘Drawing Diagrams” as follows:

2.1 Drawing Diagrams

2.1.1 Lines should not be crossed
2.1.2 Blocks should not overlap
2.1.3 Lines should not be overlapped with blocks
2.1.4 Lines should not overlap
2.1.5 Blocks should not be within MIN_DIS pixel points of

each other
2.1.6 Connected blocks should not be more than MAX_DIS

pixel points apart
2.1.7 Customized ports in user-defined function blocks should

not overlap
2.1.8 The output of a function block should be located at the

right-hand side of the block
2.1.9 Other PLC languages such as LD and ST cannot be used in

FBDs
Rule 2.1.1�2.1.4 Lines and blocks should not cross or overlap
All crossed or overlapping lines and blocks should be detected

and modified appropriately, as depicted in Fig. 13. The reason for
this is that they make it difficult for programmers to understand
the diagram clearly.

Rule 2.1.7 Customized ports in user-defined function blocks
should not overlap

User-defined function blocks have customized names of input/
output ports. These port names may be overlapped, as shown in
Fig. 14. The output port f_HI_LOG_POWER_Ptrp_Out overlaps with
the first input port, and it makes it difficult to understand the block
clearly.

Rule 2.1.8 The output of a block should be located on the
right-hand side of the block



Table 3
Hierarchy of the generic data types in IEC 61131-3 )(IEC, 2013).

Generic data types Generic data types Groups of elementary data types

ANY

ANY DERIVED

ANY ELEMENTARY

ANY MAGNITUDE

ANY NUM

ANY REAL REAL, LREAL

ANY INT ANY UNSIGNED USINT, UINT, UDINT, ULINT

ANY SIGNED SINT, INT, DINT, LINT

ANY DURATION TIME, LTIME

ANY BIT BOOL, BYTE, WORD, DWROD, LWORD

ANY CHARS

ANY STRING STRING, WSTRING

ANY CHAR CHAR, WCHAR

ANY DATE
DATE AND TIME, LDT,
DATE, TIME OF DAY, LTOD

Fig. 9. An example of an implicit-type conversion.
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An output variable of a function block (i.e., an FBD) should be
located on the right-hand side of the function block (or FBD). If
not, as described in Fig. 15., it may result in a misunderstanding
of FBDs.
3.3.2. Defining variables
The appropriate definition and use of variables are important to

improve the maintainability of FBD programs. The size of variables
and the use of additional identifiers are the concerns of this cate-
gory. In the case of user-defined function blocks, local variables
Fig. 10. An example of explicit-type

Fig. 11. An example of explicit-type c
and global variables should be distinguished clearly. We propose
the following 6 rules:

2.2 Defining Variables

2.2.1 Variable names should have more than 6 characters
2.2.2 Variable names should have less than MAX_NAME

characters
2.2.3 Literals should not be used as variables
2.2.4 Global variables should be accompanied with additional

identifiers
2.2.5 Feedback variables should be accompanied with

additional identifiers
2.2.6 Connector/Continuation should be accompanied with

additional identifiers
2.2.3 Literals should not be used as variables
A literal refers to an input/output variable that has a constant

value, such as 0, 1, and 100. Literals are very widely used in pro-
gramming FBDs. However, they may reduce the understandability
of programs, and it is better to change them using a (constant) vari-
conversions from ANY_SIGNED.

onversions from ANY_UNSIGNED.



Fig. 12. An example of explicit.-type conversions from ANY_BIT.

Fig. 13. An example of overlapping diagrams.

Fig. 14. An example of overlapping port names.

Fig. 15. An example of mislocated output.
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able that has a meaningful name, as shown in Fig. 16. The literal
100 on the left-hand side has been replaced by the constant MAX_-
TRIP variable.

Rule 2.2.5 Feedback variables should be accompanied with
additional identifiers

Feedback variables tend to be confused with other types of vari-
ables, such as (normal) I/O variables and connections. They need to
be distinguished using additional identifiers such as ‘FB_’. Fig. 17
shows an example of a feedback variable with/without identifiers.

Rule 2.2.4 Global variables should be accompanied with
additional identifiers

All variables in an FBD are global ones that can access and store
a value anywhere in the diagram. On the other hand, a user-
defined function block has a strict boundary of local and global
variables. We have to distinguish global variables (IEC, 2013) from
local ones clearly. Fig. 18 shows examples that employ an identifier
‘GB_’ for global variables used in user-defined function blocks
Trip_Calculation and Trip_Decision.

Rule 2.2.6 Connector/continuation should be accompanied
by additional identifiers

Connector/continuations express connections between two
blocks. They need to be distinguished using additional identifiers
such as ‘Connection_’ to reduce confusion with other variables, as
shown in Fig. 19.

3.3.3. Abstraction
This category consists of two rules that pertain to the number of

variables used in accordance with NUREG/CR-6463. It proposes
restricting the number of global variables under MAX_GLOBAL. It
also proposes that the number of input variables of a user-
defined function block should be controlled.

2.3 Abstraction

2.3.1 Global variables in a user-defined function block should be less

than MAX_GLOBAL
2.3.2 The number of input variables in a user-defined function block

should be less than MAX_PARA

Rule 2.3.2 The number of input variables should be less than
MAX_PARA

The number of input variables of a user-defined function block
can vary according to the design intended by the programmers.
However, they should be controlled appropriately from various
perspectives. Fig. 20 shows two FBDs that employ user-defined
function blocks having 8 inputs and 4 inputs, respectively. How-
ever, they exhibit the same behavior.

4. FBD checker

4.1. FBD checker

‘FBD Checker’ is a structural analysis tool for FBD programs that
are written in the PLCopen TC6 XML format (PLCopen XML schema
Ver. 2.0, 2008). It checks the 56 rules proposed by this paper, as
summarized in Table 2, mechanically and PLC platform-
independently. It can also explain the explicit correspondence to
higher guidelines such as NUREG/CR-6463 and IEC 61131-3.

For example, the ‘FBD Checker’ read the FBD in Fig. 21(b), and
found 9 violations of 5 sub-categories at 5 locations, as shown in



Fig. 16. An example involving the use of a literal as an input variable.

Fig. 17. An example of a feedback variable with/without identifiers.

Fig. 18. An example involving the use of an identifier for a global variable.

Fig. 19. An example of Connector/Continuation with identifiers.
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Fig. 20. An example of two different numbers of input parameters.

Fig. 21. The ‘FBD Checker’.
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Fig. 21(a). As highlighted, GE_INT_2 has no input variable for the
IN2 port, and the specific rule that was violated (i.e., Rule 1.1.3)
is explained. Its corresponding higher guideline ‘‘1.2.2 Minimizing
Control Flow Complexity” can also be acknowledged in NUREG/CR-
6463.
Other violations can be understood in a similar way: The execu-
tion order of blocks (5) and (4) is not sequential (Rule 1.1.7). Liter-
als such as 0 and 1 are also used directly (Rule 2.2.3). The variable
‘TSP’ is too short to satisfy Rule 2.2.1. The ‘FBD Checker’ also shows
the entire FBD program as well as the part highlighted.
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5. Case study

We performed two case studies to demonstrate the effective-
ness and validity of the proposed rules and the structural analysis
tool, ‘FBD Checker.’ They started from a formal requirements spec-
ification (KAERI, 2003) and an FBD program (KAERI, 2006) for pre-
liminary versions of KNICS APR-1400 RPS BP in Korea, respectively,
but we transformed them into the FBD programs having the PLCo-
pen TC6 XML format. All subsequent artifacts that were generated
from the original (KAERI, 2003; KAERI, 2006) have nothing to do
the KNICS APR-1400 RPS.

The first case study starts from an NuSCR (Yoo et al., 2005) for-
mal software requirement specification (KAERI, 2003. The KNICS
project developed the formal requirement specification as well as
typical requirement specifications written in natural languages in
order to guarantee the system validity through diversity (Yoo
and Seong, 2002; Kelly and Murphy, 1990). We used the NuDE
framework (Kim et al., accepted) to translate it into FBD programs,
as depicted in Fig. 22. ‘NuSCRtoFBD’ performs the behavior-
equivalent translation mechanically, while several formal verifica-
tion and safety analysis methods are also supported seamlessly.
The FBD can be translated into Verilog and C programs for PLC
and FPGA platforms, respectively.

On the other hand, the second case study uses one of the official
versions of FBDs (KAERI, 2006) for the RPS BP. As the FBD was
developed by experts manually from the later requirement specifi-
cation (Korea Atomic Energy Rearch Institute, 2005), it is closer to
the official last release. The FBD was developed in the software
engineering environment of its target PLC, i.e., ‘pSET’ (Cho et al.,
2007) in POSAFE-Q PLC of POSCO ICT (PONU-Tech, 2015), and we
transformed it into the form of the PLCopen TC6 standard with
Fig. 22. An overview of case stud

Fig. 23. An overview
the help of ‘pSET2TC6’ (Lee et al., 2011; Jee et al., 2010). Fig. 23
shows the process used of the second case study. The target system
consists of 18 independent shutdown logics of nuclear reactor, and
two case studies use 5 representative trip logics of nuclear reactors,
such as ‘fixed set-point rising/falling’, ‘variable set-point rising/falling’,
and ‘manual reset’ trip logics.

5.1. Case study I

Fig. 24 shows an example of the NuSCR formal requirements
specification in ‘NuSRS’ and the translated FBD in ‘FBD Editor’
(Kim et al., 2014; Lee et al., 2014). We used the NuDE framework
to translate the NuSCR specification into equivalent FBD programs.
The translated FBD consists of 59 inputs, 43 outputs, and 1,046
function blocks.

Table 4 summarizes the result of the structural checking on the
FBD program using the ‘FBD Checker.’ It found 4,643 violations for
11 categories (i.e., 4 from the Reliability category and 7 from the
Maintainability category). As the NuDE framework did not yet fol-
low the proposed guidelines and rules, it translated the formal
specification into an FBD program that contained a number of vio-
lations. As explained below, most violations are neither serious nor
critical to software safety because they resulted from the immatu-
rity of the non-commercial toolsets of the NuDE.

The most frequently violated rules in the Maintainability cate-
gory are (Rule 2.1.6) and (Rule 2.1.7). However, the violations
resulted from the immaturity of the ‘NuSCRtoFBD’ translator and
‘FBD Editor,’ and they may be resolved by improving the maturity
of the tools. For example, we could find the violations of Rules
2.1.1, 2.1.6, and 2.1.7 easily at the translated FBD of Fig. 25. Rules
such as 2.2.2 and 2.2.6 can also be resolved by improving the tools.
y I in the NuDE framework.

of case study II.



Fig. 24. The NuSCR formal requirements specification and the FBD program translated in the NuDE.
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Most violations in the Reliability category resulted from the
‘‘Implicit-Type Conversion” (Rule 1.1.4 and 1.3.1). The rules propose
to strictly restrict the use of implicit-type conversion, and propose
the use of explicit-type conversions for all cases. Because the NuDE
framework did not yet follow the rules, it produces an FBD contain-
ing implicit-type conversions. For example, ‘FBD Checker’ produces
a violation when an input variable of the derived type 0::30;000 of
(UINT) is connected to an input port of (INT). Other violations such
as ‘‘The number of function blocks in an FBD should be less than
MAX_FUNCTION” (Rule 1.1.2) can also be easily resolved in different
ways.

In summary, the ‘FBD Checker’ found more than 4,000 violations
from the FBD program, all of which the NuDE framework translated
mechanically from an NuSCR formal requirements specification for
a preliminary version of a Korean nuclear power plant. Most of
them resulted from the immaturity of the NuDE toolsets that did
not consider the guidelines and rules proposed, and were not seri-
ous. All violations of the implicit-type conversion were examined
to determine whether they were used appropriately according to
the intent of programmers, and we found that they were all used
correctly.

5.2. Case study II

We also applied the structural analysis of ‘FBD Checker’ into the
FBD program, which is another preliminary version (KAERI, 2006)
of the KNICS APR-1400 RPS BP. Software experts used the software
engineering tool, ‘pSET,’ for POSAFE-Q PLCs to develop the FBD pro-



Table 4
Structural analysis results in case study I.

Reliability Rules 1.1.2 1.1.4 1.2.3 1.3.1
# Violations 3 17 6 512

Maintainability Rules 2.1.1 2.1.6 2.1.7 2.2.1 2.2.2 2.2.3 2.2.6
# Violations 27 620 2482 101 445 1 429

Fig. 25. A screen-dump of the FBD program in ‘FBD Editor,’ containing violations of 2.1.1, 2.1.6, and 2.1.7.

Table 5
Structural analysis results.

Reliability Rules 1.2.1 1.2.3 1.2.10
# Violations 22 2 41

Maintainability Rules 2.2.1
# Violations 22
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gram. We then used ‘pSET2TC6’ in the NuDE framework to trans-
form it into developed the FBD programs from a revised require-
ments specification (Korea Atomic Energy Rearch Institute, 2005).
We transformed the FBD into a behaviorally equivalent XML form
of the PLCopen TC6 with the help of ‘pSET2TC6’ in the NuDE frame-
work. The case study used 5 representative trip logics used in the
former case study, consisting of 119 function blocks. Because the
experts developed the FBD from scratch, it is more compact and
optimized than the one translated mechanically from formal
requirement specifications.

The ‘FBD Checker’ produced 87 violations from 4 categories,
such as three from the Reliability category and one from Maintain-
ability category, as summarized in Table 5. In comparison with the
former case study, the FBD has smaller, but not simple violations,
and most of them can be resolved easily (Rules 1.2.10, 1.2.3, and
2.2.1). However, for the 22 violations of Rule 1.2.1 (‘‘All local vari-
ables should be initialized.”), there is a need for an explanation about
why they did not result in critical errors.

The FBD of case study II was developed with the help of the soft-
ware engineering tool (i.e., pSET) of the target PLC vendor. The tool
provides a way to define and initialize all variables in one table, as
shown at the top-center window in Fig. 26. Programmers can cat-
egorize the variables as I/O and local types appropriately. While
extracting 5 logic parts from the whole FBD of 18 logics, a few of
the I/O variables were redefined as local variables. As ‘pSET’ does
not require I/O variables to be initialized (because they are initial-
ized as NULL in memory), the redefined local variables are also not
initialized, resulting in the 22 violations of Rule 1.2.1.
For example, the _D_HYS variable is defined as an I/O type in
Fig. 26. However, it was redefined as a local variable with no ini-
tialization when the user-defined function block MANUAL_RATE_-
FALLING was extracted from the whole FBD, and it was
considered as another stand-alone FBD (i.e., a unit of structural
analysis for ‘FBD Checker’). This case resulted in a violation of Rule
1.2.1. On the other hand, the extraction has no effect on the I/O
variable PV_OUT because its I/O type remains the same after the
extraction. The ‘FBD Checker’ produced no violation for the case.

In summary, the ‘FBD Checker’ found 87 violations from the FBD
program, which experts programmed in the ‘pSET’ software engi-
neering environment. There were 22 violations of Rule 1.2.1, which
resulted from the process of preparing the case study, and 65 other
violations could be resolved easily by revising and obeying FBD
programming guidelines and rules. It should be noted that the case
study produced few violations in comparison with case study I
because the PLC software engineering tool provides and follows
mature FBD programming guidelines implicitly.



Fig. 26. A screen-dump of ‘pSET about variable definitions.
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6. Conclusion and future work

In this paper, we propose a set of 56 specific rules on the struc-
ture of FBD programs, which can acknowledge the direct correla-
tion with higher guidelines such as NUREG/CR-6463 and IEC
61131-3. The ‘FBD Checker’ also performs the structural analysis
for any FBD programs in the PLCopen TC6 XML form PLC
platform-independently (i.e., PLC and SW tools). We used commer-
cial PLC software engineering tools to perform the analysis, but the
direct correlations remain unclear. For FBD programs, we also per-
formed case studies of structural analyses that were sampled from
preliminary versions of Korean nuclear power plants, and then
transformed by the NuDE framework. They show the effectiveness
and potential of the proposed rule sets and analysis tool. We cur-
rently plan to deal with cyber-security (Kim, 2014) guidelines such
as US NRC RG 5.71 (NRC, 2010) and IEC 62645 (IEC, 2014; Lee et al.,
2013).
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